65 research outputs found

    Toward a Surrogate Marker of Malaria Exposure: Modeling Longitudinal Antibody Measurements under Outbreak Conditions

    Get PDF
    Background: Biomarkers of exposure to Plasmodium falciparum would be a useful tool for the assessment of malaria burden and analysis of intervention and epidemiological studies. Antibodies to pre-erythrocytic antigens represent potential surrogates of exposure. Methods and Findings: In an outbreak cohort of U.S. Marines deployed to Liberia, we modeled pre- and post-deployment IgG against P. falciparum sporozoites by immunofluorescence antibody test, and both IgG and IgM against the P. falciparum circumsporozoite protein by enzyme-linked immunosorbant assay. Modeling seroconversion thresholds by a fixed ratio, linear regression or nonlinear regression produced sensitivity for identification of exposed U.S. Marines between 58-70% and specificities between 87-97%, compared with malaria-naïve U.S. volunteers. Exposure was predicted in 30-45% of the cohort. Conclusion: Each of the three models tested has merits in different studies, but further development and validation in endemic populations is required. Overall, these models provide support for an antibody-based surrogate marker of exposure to malaria

    Identification of malaria transmission and epidemic hotspots in the western Kenya highlands: its application to malaria epidemic prediction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malaria in the western Kenya highlands is characterized by unstable and high transmission variability which results in epidemics during periods of suitable climatic conditions. The sensitivity of a site to malaria epidemics depends on the level of immunity of the human population. This study examined how terrain in the highlands affects exposure and sensitivity of a site to malaria.</p> <p>Methods</p> <p>The study was conducted in five sites in the western Kenya highlands, two U-shaped valleys (Iguhu, Emutete), two V-shaped valleys (Marani, Fort-Ternan) and one plateau (Shikondi) for 16 months among 6-15 years old children. Exposure to malaria was tested using circum-sporozoite protein (CSP) and merozoite surface protein (MSP) immunochromatographic antibody tests; malaria infections were tested by microscopic examination of thick and thin smears, the children's homes were georeferenced using a global positioning system. Paired t-test was used to compare the mean prevalence rates of the sites, K-function was use to determine if the clustering of malaria infections was significant.</p> <p>Results and Discussion</p> <p>The mean antibody prevalence was 22.6% in Iguhu, 24% in Emutete, 11.5% in Shikondi, 8.3% in Fort-Ternan and 9.3% in Marani. The mean malaria infection prevalence was 23.3% in Iguhu, 21.9% in Emutete, 4.7% in Shikondi, 2.9% in Fort-Ternan and 2.4% in Marani. There was a significant difference in the antibodies and malaria infection prevalence between the two valley systems, and between the two valley systems and the plateau (P < 0.05). There was no significant difference in the antibodies and malaria infection prevalence in the two U-shaped valleys (Iguhu and Emutete) and in the V-shaped valleys (Marani and Fort Ternan) (P > 0.05). There was 8.5- fold and a 2-fold greater parasite and antibody prevalence respectively, in the U-shaped compared to the V-shaped valleys. The plateau antibody and parasite prevalence was similar to that of the V-shaped valleys. There was clustering of malaria antibodies and infections around flat areas in the U-shaped valleys, the infections were randomly distributed in the V-shaped valleys and less clustered at the plateau.</p> <p>Conclusion</p> <p>This study showed that the V-shaped ecosystems have very low malaria prevalence and few individuals with an immune response to two major malaria antigens and they can be considered as epidemic hotspots. These populations are at higher risk of severe forms of malaria during hyper-transmission seasons. The plateau ecosystem has a similar infection and immune response to the V-shaped ecosystems. The U-shaped ecosystems are transmission hotspots.</p

    Surveillance of vector populations and malaria transmission during the 2009/10 El Niño event in the western Kenya highlands: opportunities for early detection of malaria hyper-transmission

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Vector control in the highlands of western Kenya has resulted in a significant reduction of malaria transmission and a change in the vectorial system. Climate variability as a result of events such as El Niño increases the highlands suitability for malaria transmission. Surveillance and monitoring is an important component of early transmission risk identification and management. However, below certain disease transmission thresholds, traditional tools for surveillance such as entomological inoculation rates may become insensitive. A rapid diagnostic kit comprising <it>Plasmodium falciparum </it>circumsporozoite surface protein and merozoite surface protein antibodies in humans was tested for early detection of transmission surges in the western Kenya highlands during an El Niño event (October 2009-February 2010).</p> <p>Methods</p> <p>Indoor resting female adult malaria vectors were collected in western Kenya highlands in four selected villages categorized into two valley systems, the U-shaped (Iguhu and Emutete) and the V-shaped valleys (Marani and Fort Ternan) for eight months. Members of the <it>Anopheles gambiae </it>complex were identified by PCR. Blood samples were collected from children 6-15 years old and exposure to malaria was tested using a circum-sporozoite protein and merozoite surface protein immunchromatographic rapid diagnostic test kit. Sporozoite ELISA was conducted to detect circum-sporozoite protein, later used for estimation of entomological inoculation rates.</p> <p>Results</p> <p>Among the four villages studied, an upsurge in antibody levels was first observed in October 2009. <it>Plasmodium falciparum </it>sporozoites were then first observed in December 2009 at Iguhu village and February 2010 at Emutete. Despite the upsurge in Marani and Fort Ternan no sporozoites were detected throughout the eight month study period. The antibody-based assay had much earlier transmission detection ability than the sporozoite-based assay. The proportion of <it>An. arabiensis </it>among <it>An. gambiae s.l</it>. ranged from 2.9-66.7% indicating a rearrangement of the sibling species of the <it>An. gambiae s.l </it>complex. This is possibly an adaptation to insecticide interventions and climate change.</p> <p>Conclusion</p> <p>The changing malaria transmission rates in the western Kenya highlands will lead to more unstable transmission, decreased immunity and a high vulnerability to epidemics unless surveillance tools are improved and effective vector control is sustained.</p

    Superparamagnetic properties of hemozoin

    Get PDF
    We report that hemozoin nanocrystals demonstrate superparamagnetic properties, with direct measurements of the synthetic hemozoin magnetization. The results show that the magnetic permeability constant varies from mu = 4585 (at -20 degrees C) to 3843 (+20 degrees C), with the values corresponding to a superparamagnetic system. Similar results were obtained from the analysis of the diffusion separation of natural hemozoin nanocrystals in the magnetic field gradient, with mu = 6783 exceeding the value obtained in direct measurements by the factor of 1.8. This difference is interpreted in terms of structural differences between the synthetic and natural hemozoin. The ab initio analysis of the hemozoin elementary cell showed that the Fe3+ ion is in the high-spin state (S = 5/2), while the exchange interaction between Fe3+ electron-spin states was much stronger than k(B)T at room temperature. Thus, the spin dynamics of the neighboring Fe3+ ions are strongly correlated, lending support to the superparamagnetism

    Transcription and Expression of Plasmodium falciparum Histidine-Rich Proteins in Different Stages and Strains: Implications for Rapid Diagnostic Tests

    Get PDF
    Background: Although rapid diagnostic tests (RDTs) for Plasmodium falciparum infection that target histidine rich protein 2 (PfHRP2) are generally sensitive, their performance has been reported to be variable. One possible explanation for variable test performance is differences in expression level of PfHRP in different parasite isolates. Methods: Total RNA and protein were extracted from synchronised cultures of 7 P. falciparum lines over 5 time points of the life cycle, and from synchronised ring stages of 10 falciparum lines. Using quantitative real-time polymerase chain reaction, Western blot analysis and ELISA we investigated variations in the transcription and protein levels of pfhrp2, pfhrp3 and PfHRP respectively in the different parasite lines, over the parasite intraerythrocytic life cycle. Results: Transcription of pfhrp2 and pfhrp3 in different parasite lines over the parasite life cycle was observed to vary relative to the control parasite K1. In some parasite lines very low transcription of these genes was observed. The peak transcription was observed in ring-stage parasites. Pfhrp2 transcription was observed to be consistently higher than pfhrp3 transcription within parasite lines. The intraerythrocytic lifecycle stage at which the peak level of protein was present varied across strains. Total protein levels were more constant relative to total mRNA transcription, however a maximum 24 fold difference in expression at ring-stage parasites relative to the K1 strain was observed. Conclusions: The levels of transcription of pfhrp2 and pfhrp3, and protein expression of PfHRP varied between different P. falciparum strains. This variation may impact on the detection sensitivity of PfHRP2-detecting RDTs

    Malaria pigment crystals as magnetic micro-rotors: Key for high-sensitivity diagnosis

    Get PDF
    The need to develop new methods for the high-sensitivity diagnosis of malaria has initiated a global activity in medical and interdisciplinary sciences. Most of the diverse variety of emerging techniques are based on research-grade instruments, sophisticated reagent-based assays or rely on expertise. Here, we suggest an alternative optical methodology with an easy-to- use and cost-effective instrumentation based on unique properties of malaria pigment reported previously and determined quantitatively in the present study. Malaria pigment, also called hemozoin, is an insoluble microcrystalline form of heme. These crystallites show remarkable magnetic and optical anisotropy distinctly from any other components of blood. As a consequence, they can simultaneously act as magnetically driven micro-rotors and spinning polarizers in suspensions. These properties can gain importance not only in malaria diagnosis and therapies, where hemozoin is considered as drug target or immune modulator, but also in the magnetic manipulation of cells and tissues on the microscopic scale

    Synthetic Plasmodium-Like Hemozoin Activates the Immune Response: A Morphology - Function Study

    Get PDF
    Increasing evidence points to an important role for hemozoin (HZ), the malaria pigment, in the immunopathology related to this infection. However, there is no consensus as to whether HZ exerts its immunostimulatory activity in absence of other parasite or host components. Contamination of native HZ preparations and the lack of a unified protocol to produce crystals that mimic those of Plasmodium HZ (PHZ) are major technical limitants when performing functional studies with HZ. In fact, the most commonly used methods generate a heterogeneous nanocrystalline material. Thus, it is likely that such aggregates do not resemble to PHZ and differ in their inflammatory properties. To address this issue, the present study was designed to establish whether synthetic HZ (sHZ) crystals produced by different methods vary in their morphology and in their ability to activate immune responses. We report a new method of HZ synthesis (the precise aqueous acid-catalyzed method) that yields homogeneous sHZ crystals (Plasmodium-like HZ) which are very similar to PHZ in their size and physicochemical properties. Importantly, these crystals are devoid of protein and DNA contamination. Of interest, structure-function studies revealed that the size and shape of the synthetic crystals influences their ability to activate inflammatory responses (e.g. nitric oxide, chemokine and cytokine mRNA) in vitro and in vivo. In summary, our data confirm that sHZ possesses immunostimulatory properties and underline the importance of verifying by electron microscopy both the morphology and homogeneity of the synthetic crystals to ensure that they closely resemble those of the parasite. Periodic quality control experiments and unification of the method of HZ synthesis are key steps to unravel the role of HZ in malaria immunopathology

    Evaluation of a novel magneto-optical method for the detection of malaria parasites

    Get PDF
    Improving the efficiency of malaria diagnosis is one of the main goals of current malaria research. We have recently developed a magneto-optical (MO) method which allows high-sensitivity detection of malaria pigment (hemozoin crystals) in blood via the magnetically induced rotational motion of the hemozoin crystals. Here, we evaluate this MO technique for the detection of Plasmodium falciparum in infected erythrocytes using in-vitro parasite cultures covering the entire intraerythrocytic life cycle. Our novel method detected parasite densities as low as approximately 40 parasites per microliter of blood (0.0008% parasitemia) at the ring stage and less than 10 parasites/microL (0.0002% parasitemia) in the case of the later stages. These limits of detection, corresponding to approximately 20 pg/microL of hemozoin produced by the parasites, exceed that of rapid diagnostic tests and compete with the threshold achievable by light microscopic observation of blood smears. The MO diagnosis requires no special training of the operator or specific reagents for parasite detection, except for an inexpensive lysis solution to release intracellular hemozoin. The devices can be designed to a portable format for clinical and in-field tests. Besides testing its diagnostic performance, we also applied the MO technique to investigate the change in hemozoin concentration during parasite maturation. Our preliminary data indicate that this method may offer an efficient tool to determine the amount of hemozoin produced by the different parasite stages in synchronized cultures. Hence, it could eventually be used for testing the susceptibility of parasites to antimalarial drugs

    Metabolomic Profiling Reveals Mitochondrial-Derived Lipid Biomarkers That Drive Obesity-Associated Inflammation

    Get PDF
    Obesity has reached epidemic proportions worldwide. Several animal models of obesity exist, but studies are lacking that compare traditional lard-based high fat diets (HFD) to “Cafeteria diets" (CAF) consisting of nutrient poor human junk food. Our previous work demonstrated the rapid and severe obesogenic and inflammatory consequences of CAF compared to HFD including rapid weight gain, markers of Metabolic Syndrome, multi-tissue lipid accumulation, and dramatic inflammation. To identify potential mediators of CAF-induced obesity and Metabolic Syndrome, we used metabolomic analysis to profile serum, muscle, and white adipose from rats fed CAF, HFD, or standard control diets. Principle component analysis identified elevations in clusters of fatty acids and acylcarnitines. These increases in metabolites were associated with systemic mitochondrial dysfunction that paralleled weight gain, physiologic measures of Metabolic Syndrome, and tissue inflammation in CAF-fed rats. Spearman pairwise correlations between metabolites, physiologic, and histologic findings revealed strong correlations between elevated markers of inflammation in CAF-fed animals, measured as crown like structures in adipose, and specifically the pro-inflammatory saturated fatty acids and oxidation intermediates laurate and lauroyl carnitine. Treatment of bone marrow-derived macrophages with lauroyl carnitine polarized macrophages towards the M1 pro-inflammatory phenotype through downregulation of AMPK and secretion of pro-inflammatory cytokines. Results presented herein demonstrate that compared to a traditional HFD model, the CAF diet provides a robust model for diet-induced human obesity, which models Metabolic Syndrome-related mitochondrial dysfunction in serum, muscle, and adipose, along with pro-inflammatory metabolite alterations. These data also suggest that modifying the availability or metabolism of saturated fatty acids may limit the inflammation associated with obesity leading to Metabolic Syndrome
    corecore